112 research outputs found

    Coupling with the stationary distribution and improved sampling for colorings and independent sets

    Full text link
    We present an improved coupling technique for analyzing the mixing time of Markov chains. Using our technique, we simplify and extend previous results for sampling colorings and independent sets. Our approach uses properties of the stationary distribution to avoid worst-case configurations which arise in the traditional approach. As an application, we show that for k/Δ>1.764k/\Delta >1.764, the Glauber dynamics on kk-colorings of a graph on nn vertices with maximum degree Δ\Delta converges in O(nlogn)O(n\log n) steps, assuming Δ=Ω(logn)\Delta =\Omega(\log n) and that the graph is triangle-free. Previously, girth 5\ge 5 was needed. As a second application, we give a polynomial-time algorithm for sampling weighted independent sets from the Gibbs distribution of the hard-core lattice gas model at fugacity λ<(1ϵ)e/Δ\lambda <(1-\epsilon)e/\Delta, on a regular graph GG on nn vertices of degree Δ=Ω(logn)\Delta =\Omega(\log n) and girth 6\ge 6. The best known algorithm for general graphs currently assumes λ<2/(Δ2)\lambda <2/(\Delta -2).Comment: Published at http://dx.doi.org/10.1214/105051606000000330 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models

    Full text link
    Recent inapproximability results of Sly (2010), together with an approximation algorithm presented by Weitz (2006) establish a beautiful picture for the computational complexity of approximating the partition function of the hard-core model. Let λc(TΔ)\lambda_c(T_\Delta) denote the critical activity for the hard-model on the infinite Δ\Delta-regular tree. Weitz presented an FPTAS for the partition function when λ<λc(TΔ)\lambda<\lambda_c(T_\Delta) for graphs with constant maximum degree Δ\Delta. In contrast, Sly showed that for all Δ3\Delta\geq 3, there exists ϵΔ>0\epsilon_\Delta>0 such that (unless RP=NP) there is no FPRAS for approximating the partition function on graphs of maximum degree Δ\Delta for activities λ\lambda satisfying λc(TΔ)<λ<λc(TΔ)+ϵΔ\lambda_c(T_\Delta)<\lambda<\lambda_c(T_\Delta)+\epsilon_\Delta. We prove that a similar phenomenon holds for the antiferromagnetic Ising model. Recent results of Li et al. and Sinclair et al. extend Weitz's approach to any 2-spin model, which includes the antiferromagnetic Ising model, to yield an FPTAS for the partition function for all graphs of constant maximum degree Δ\Delta when the parameters of the model lie in the uniqueness regime of the infinite tree TΔT_\Delta. We prove the complementary result that for the antiferrogmanetic Ising model without external field that, unless RP=NP, for all Δ3\Delta\geq 3, there is no FPRAS for approximating the partition function on graphs of maximum degree Δ\Delta when the inverse temperature lies in the non-uniqueness regime of the infinite tree TΔT_\Delta. Our results extend to a region of the parameter space for general 2-spin models. Our proof works by relating certain second moment calculations for random Δ\Delta-regular bipartite graphs to the tree recursions used to establish the critical points on the infinite tree.Comment: Journal version (no changes

    Swendsen-Wang Algorithm on the Mean-Field Potts Model

    Full text link
    We study the qq-state ferromagnetic Potts model on the nn-vertex complete graph known as the mean-field (Curie-Weiss) model. We analyze the Swendsen-Wang algorithm which is a Markov chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor large sets of vertices in one step and potentially overcomes obstacles that inhibit single-site Glauber dynamics. Long et al. studied the case q=2q=2, the Swendsen-Wang algorithm for the mean-field ferromagnetic Ising model, and showed that the mixing time satisfies: (i) Θ(1)\Theta(1) for β<βc\beta<\beta_c, (ii) Θ(n1/4)\Theta(n^{1/4}) for β=βc\beta=\beta_c, (iii) Θ(logn)\Theta(\log n) for β>βc\beta>\beta_c, where βc\beta_c is the critical temperature for the ordered/disordered phase transition. In contrast, for q3q\geq 3 there are two critical temperatures 0<βu<βrc0<\beta_u<\beta_{rc} that are relevant. We prove that the mixing time of the Swendsen-Wang algorithm for the ferromagnetic Potts model on the nn-vertex complete graph satisfies: (i) Θ(1)\Theta(1) for β<βu\beta<\beta_u, (ii) Θ(n1/3)\Theta(n^{1/3}) for β=βu\beta=\beta_u, (iii) exp(nΩ(1))\exp(n^{\Omega(1)}) for βu<β<βrc\beta_u<\beta<\beta_{rc}, and (iv) Θ(logn)\Theta(\log{n}) for ββrc\beta\geq\beta_{rc}. These results complement refined results of Cuff et al. on the mixing time of the Glauber dynamics for the ferromagnetic Potts model.Comment: To appear in Random Structures & Algorithm

    Random-Cluster Dynamics in Z^2: Rapid Mixing with General Boundary Conditions

    Get PDF
    The random-cluster (FK) model is a key tool for the study of phase transitions and for the design of efficient Markov chain Monte Carlo (MCMC) sampling algorithms for the Ising/Potts model. It is well-known that in the high-temperature region beta<beta_c(q) of the q-state Ising/Potts model on an n x n box Lambda_n of the integer lattice Z^2, spin correlations decay exponentially fast; this property holds even arbitrarily close to the boundary of Lambda_n and uniformly over all boundary conditions. A direct consequence of this property is that the corresponding single-site update Markov chain, known as the Glauber dynamics, mixes in optimal O(n^2 log{n}) steps on Lambda_{n} for all choices of boundary conditions. We study the effect of boundary conditions on the FK-dynamics, the analogous Glauber dynamics for the random-cluster model. On Lambda_n the random-cluster model with parameters (p,q) has a sharp phase transition at p = p_c(q). Unlike the Ising/Potts model, the random-cluster model has non-local interactions which can be forced by boundary conditions: external wirings of boundary vertices of Lambda_n. We consider the broad and natural class of boundary conditions that are realizable as a configuration on Z^2 Lambda_n. Such boundary conditions can have many macroscopic wirings and impose long-range correlations even at very high temperatures (p 1 and p != p_c(q) the mixing time of the FK-dynamics is polynomial in n for every realizable boundary condition. Previously, for boundary conditions that do not carry long-range information (namely wired and free), Blanca and Sinclair (2017) had proved that the FK-dynamics in the same setting mixes in optimal O(n^2 log n) time. To illustrate the difficulties introduced by general boundary conditions, we also construct a class of non-realizable boundary conditions that induce slow (stretched-exponential) convergence at high temperatures

    Inapproximability for Antiferromagnetic Spin Systems in the Tree Non-Uniqueness Region

    Full text link
    A remarkable connection has been established for antiferromagnetic 2-spin systems, including the Ising and hard-core models, showing that the computational complexity of approximating the partition function for graphs with maximum degree D undergoes a phase transition that coincides with the statistical physics uniqueness/non-uniqueness phase transition on the infinite D-regular tree. Despite this clear picture for 2-spin systems, there is little known for multi-spin systems. We present the first analog of the above inapproximability results for multi-spin systems. The main difficulty in previous inapproximability results was analyzing the behavior of the model on random D-regular bipartite graphs, which served as the gadget in the reduction. To this end one needs to understand the moments of the partition function. Our key contribution is connecting: (i) induced matrix norms, (ii) maxima of the expectation of the partition function, and (iii) attractive fixed points of the associated tree recursions (belief propagation). The view through matrix norms allows a simple and generic analysis of the second moment for any spin system on random D-regular bipartite graphs. This yields concentration results for any spin system in which one can analyze the maxima of the first moment. The connection to fixed points of the tree recursions enables an analysis of the maxima of the first moment for specific models of interest. For k-colorings we prove that for even k, in the tree non-uniqueness region (which corresponds to k<D) it is NP-hard, unless NP=RP, to approximate the number of colorings for triangle-free D-regular graphs. Our proof extends to the antiferromagnetic Potts model, and, in fact, to every antiferromagnetic model under a mild condition

    Analysis of top-swap shuffling for genome rearrangements

    Full text link
    We study Markov chains which model genome rearrangements. These models are useful for studying the equilibrium distribution of chromosomal lengths, and are used in methods for estimating genomic distances. The primary Markov chain studied in this paper is the top-swap Markov chain. The top-swap chain is a card-shuffling process with nn cards divided over kk decks, where the cards are ordered within each deck. A transition consists of choosing a random pair of cards, and if the cards lie in different decks, we cut each deck at the chosen card and exchange the tops of the two decks. We prove precise bounds on the relaxation time (inverse spectral gap) of the top-swap chain. In particular, we prove the relaxation time is Θ(n+k)\Theta(n+k). This resolves an open question of Durrett.Comment: Published in at http://dx.doi.org/10.1214/105051607000000177 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore